Text Classification with RTextTools
Odum Institute University of North Carolina

Loren Collingwood\(^1\) (with Tim Jurka, Amber Boydstun, Emiliano Grossman, and Wouter van Atteveldt)
February 6, 2012

\(^1\) Political Science, University of Washington
Workshop Road Map

- Brief lecture on content analysis, RTextTools and machine learning
Workshop Road Map

- Brief lecture on content analysis, RTextTools and machine learning
- Introduction to R
Workshop Road Map

- Brief lecture on content analysis, RTextTools and machine learning
- Introduction to R
- Classifying newspaper data – most basic example
Workshop Road Map

- Brief lecture on content analysis, RTextTools and machine learning
- Introduction to R
- Classifying newspaper data – most basic example
- Classifying congressional bill data
Workshop Road Map

- Brief lecture on content analysis, RTextTools and machine learning
- Introduction to R
- Classifying newspaper data – most basic example
- Classifying congressional bill data
- Classifying blog data
Workshop Road Map

- Brief lecture on content analysis, RTextTools and machine learning
- Introduction to R
- Classifying newspaper data – most basic example
- Classifying congressional bill data
- Classifying blog data
- Classifying survey open-ends data
Workshop Road Map

- Brief lecture on content analysis, RTextTools and machine learning
- Introduction to R
- Classifying newspaper data – most basic example
- Classifying congressional bill data
- Classifying blog data
- Classifying survey open-ends data
Content Analysis

- Study of recorded human communication
Content Analysis

- Study of recorded human communication
- Summary and quantitative analysis of communicated messages
Content Analysis

- Study of recorded human communication
- Summary and quantitative analysis of communicated messages
- Researcher looks for patterns/themes in text; develops “code frame” to categorize text
Content Analysis

- Study of recorded human communication
- Summary and quantitative analysis of communicated messages
- Researcher looks for patterns/themes in text; develops “code frame” to categorize text
- Essentially, variables are extracted from text
Content Analysis

- Study of recorded human communication
- Summary and quantitative analysis of communicated messages
- Researcher looks for patterns/themes in text; develops “code frame” to categorize text
- Essentially, variables are extracted from text
- Based on scientific method; establishes objectivity via inter-coder reliability
Pros and Cons of Content Analysis

- Very flexible
Pros and Cons of Content Analysis

- Very flexible
- Create all sorts of variables for data summarization
Pros and Cons of Content Analysis

- Very flexible
- Create all sorts of variables for data summarization
- Build theoretically motivated classification scheme (code frame)

Can apply to written language, speech, video

Manually intensive
Establishing inter-coder reliability takes time and serious attention to detail
Can be expensive
Pros and Cons of Content Analysis

- Very flexible
- Create all sorts of variables for data summarization
- Build theoretically motivated classification scheme (code frame)
- Can apply to written language, speech, video
Pros and Cons of Content Analysis

- Very flexible
- Create all sorts of variables for data summarization
- Build theoretically motivated classification scheme (code frame)
- Can apply to written language, speech, video
- Manually intensive
Pros and Cons of Content Analysis

- Very flexible
- Create all sorts of variables for data summarization
- Build theoretically motivated classification scheme (code frame)
- Can apply to written language, speech, video
- Manually intensive
- Establishing inter-coder reliability takes time and serious attention to detail
Pros and Cons of Content Analysis

- Very flexible
- Create all sorts of variables for data summarization
- Build theoretically motivated classification scheme (code frame)
- Can apply to written language, speech, video
- Manually intensive
- Establishing inter-coder reliability takes time and serious attention to detail
- Can be expensive
Pros and Cons of Content Analysis

- Very flexible
- Create all sorts of variables for data summarization
- Build theoretically motivated classification scheme (code frame)
- Can apply to written language, speech, video
- Manually intensive
- Establishing inter-coder reliability takes time and serious attention to detail
- Can be expensive
What is RTextTools?

- R package for automating certain types of content analysis
What is RTextTools?

- R package for automating certain types of content analysis
- Uses supervised learning methods to automate text classification
What is RTextTools?

- R package for automating certain types of content analysis
- Uses supervised learning methods to automate text classification
- Uses many pre-existing text and machine learning R packages
What is RTextTools?

- R package for automating certain types of content analysis
- Uses supervised learning methods to automate text classification
- Uses many pre-existing text and machine learning R packages
- Built in text pre-processing and analytics
What is RTextTools?

- R package for automating certain types of content analysis
- Uses supervised learning methods to automate text classification
- Uses many pre-existing text and machine learning R packages
- Built in text pre-processing and analytics
- Fairly simple and intuitive to use, even for notice R users
What is RTextTools?

- R package for automating certain types of content analysis
- Uses supervised learning methods to automate text classification
- Uses many pre-existing text and machine learning R packages
- Built in text pre-processing and analytics
- Fairly simple and intuitive to use, even for notice R users
- Memory issues in R and text analysis in general
What is RTextTools?

- R package for automating certain types of content analysis
- Uses supervised learning methods to automate text classification
- Uses many pre-existing text and machine learning R packages
- Built in text pre-processing and analytics
- Fairly simple and intuitive to use, even for notice R users
- Memory issues in R and text analysis in general
Origins of the Project

- Policy Agendas Project
Origins of the Project

- Policy Agendas Project
- Congressional Bills Project
Origins of the Project

- Policy Agendas Project
- Congressional Bills Project
- Comparative Agendas Project
Origins of the Project

- Policy Agendas Project
- Congressional Bills Project
- Comparative Agendas Project
- TextTools
Origins of the Project

- Policy Agendas Project
- Congressional Bills Project
- Comparative Agendas Project
- TextTools
- Rtexttools
Origins of the Project

- Policy Agendas Project
- Congressional Bills Project
- Comparative Agendas Project
- TextTools
- Rtexttools
- RTextTools
Origins of the Project

- Policy Agendas Project
- Congressional Bills Project
- Comparative Agendas Project
- TextTools
- Rtexttools
- RTextTools
What is Machine Learning?

- Subfield of artificial intelligence
What is Machine Learning?

- Subfield of artificial intelligence
- Computer “learns” from empirical data
What is Machine Learning?

- Subfield of artificial intelligence
- Computer “learns” from empirical data
- Evolves behavior based on what is learned
What is Machine Learning?

- Subfield of artificial intelligence
- Computer “learns” from empirical data
- Evolves behavior based on what is learned
- Can make informed decision given new virgin data
What is Machine Learning?

- Subfield of artificial intelligence
- Computer “learns” from empirical data
- Evolves behavior based on what is learned
- Can make informed decision given new virgin data
- Basically... like regression except text are variables/data
What is Machine Learning?

- Subfield of artificial intelligence
- Computer “learns” from empirical data
- Evolves behavior based on what is learned
- Can make informed decision given new virgin data
- Basically... like regression except text are variables/data
- Supervised learning is a specific type of machine learning
What is Machine Learning?

- Subfield of artificial intelligence
- Computer “learns” from empirical data
- Evolves behavior based on what is learned
- Can make informed decision given new virgin data
- Basically... like regression except text are variables/data
- Supervised learning is a specific type of machine learning
How Does Supervised Learning Work?

- User presents classified data to software
How Does Supervised Learning Work?

- User presents classified data to software
- Learning algorithm creates a “behavioral model”, and adjusts behavior given function parameters
How Does Supervised Learning Work?

- User presents classified data to software
- Learning algorithm creates a “behavioral model”, and adjusts behavior given function parameters
- Software then classifies data the computer has never seen
How Does Supervised Learning Work?

- User presents classified data to software
- Learning algorithm creates a “behavioral model”, and adjusts behavior given function parameters
- Software then classifies data the computer has never seen
When Should a Researcher Use It?

- You have a large corpus of text that your undergrad has already manually coded into pre-assigned topic labels.
When Should a Researcher Use It?

- You have a large corpus of text that your undergrad has already manually coded into pre-assigned topic labels.
- Then your undergrad quits, but you still have much more topic labeling to do.
When Should a Researcher Use It?

- You have a large corpus of text that your undergrad has already manually coded into pre-assigned topic labels
- Then your undergrad quits, but you still have much more topic labeling to do
- You don’t want to do the manual labeling because that is manually intensive
When Should a Researcher Use It?

- You have a large corpus of text that your undergrad has already manually coded into pre-assigned topic labels.
- Then your undergrad quits, but you still have much more topic labeling to do.
- You don’t want to do the manual labeling because that is manually intensive.
- Supervised learning automates the labeling of a large portion of remaining text documents.
When Should a Researcher Use It?

- You have a large corpus of text that your undergrad has already manually coded into pre-assigned topic labels.
- Then your undergrad quits, but you still have much more topic labeling to do.
- You don’t want to do the manual labeling because that is manually intensive.
- Supervised learning automates the labeling of a large portion of remaining text documents.
- But you are likely to still have to manually label some of the documents (active learning).
When Should a Researcher Use It?

- You have a large corpus of text that your undergrad has already manually coded into pre-assigned topic labels.
- Then your undergrad quits, but you still have much more topic labeling to do.
- You don’t want to do the manual labeling because that is manually intensive.
- Supervised learning automates the labeling of a large portion of remaining text documents.
- But you are likely to still have to manually label some of the documents (active learning).
What Do You Need?

- An Excel (or other) file with manually coded data
What Do You Need?

- An Excel (or other) file with manually coded data
- A substantial number (>3000 documents) of manually labeled documents
What Do You Need?

- An Excel (or other) file with manually coded data
- A substantial number (>3000 documents) of manually labeled documents
- One (or more) column(s) for text data
What Do You Need?

- An Excel (or other) file with manually coded data
- A substantial number (>3000 documents) of manually labeled documents
- One (or more) column(s) for text data
- One column for topic label
What Do You Need?

- An Excel (or other) file with manually coded data
- A substantial number (>3000 documents) of manually labeled documents
- One (or more) column(s) for text data
- One column for topic label
What the Data May Look Like

<table>
<thead>
<tr>
<th>Article_ID</th>
<th>Date</th>
<th>Title</th>
<th>Subject</th>
<th>Topic Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>41246</td>
<td>1-Jan-96</td>
<td>Nation's Small Jails overwhelm</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>41257</td>
<td>2-Jan-96</td>
<td>FEDERAL IMPA</td>
<td>Federal budge</td>
<td>20</td>
</tr>
<tr>
<td>41268</td>
<td>3-Jan-96</td>
<td>Long, Costly</td>
<td>P Contenders for</td>
<td>20</td>
</tr>
<tr>
<td>41279</td>
<td>4-Jan-96</td>
<td>Top Leader of Bosnia Serb</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>
Basic Workflow

- Import your hand-coded data into R
Basic Workflow

- Import your hand-coded data into R
- Remove “noise” from your data, and create a text corpus the computer can interpret
Basic Workflow

- Import your hand-coded data into R
- Remove “noise” from your data, and create a text corpus the computer can interpret
- Use algorithm(s) to train a model
- Test on reference out-of-sample data; establish accuracy criteria
- Use model to classify virgin data
- Manually label data that do not meet accuracy criteria
Basic Workflow

- Import your hand-coded data into R
- Remove “noise” from your data, and create a text corpus the computer can interpret
- Use algorithm(s) to train a model
- Test on reference out-of-sample data; establish accuracy criteria
- Use model to classify virgin data
- Manually label data that do not meet accuracy criteria
Basic Workflow

- Import your hand-coded data into R
- Remove “noise” from your data, and create a text corpus the computer can interpret
- Use algorithm(s) to train a model
- Test on reference out-of-sample data; establish accuracy criteria
- Use model to classify virgin data

Manually label data that do not meet accuracy criteria
Basic Workflow

- Import your hand-coded data into R
- Remove “noise” from your data, and create a text corpus the computer can interpret
- Use algorithm(s) to train a model
- Test on reference out-of-sample data; establish accuracy criteria
- Use model to classify virgin data
- Manually label data that do not meet accuracy criteria
Basic Workflow

- Import your hand-coded data into R
- Remove “noise” from your data, and create a text corpus the computer can interpret
- Use algorithm(s) to train a model
- Test on reference out-of-sample data; establish accuracy criteria
- Use model to classify virgin data
- Manually label data that do not meet accuracy criteria
Main Functions

- create_matrix
Main Functions

- create_matrix
- create_corpus
Main Functions

- create_matrix
- create_corpus
- train_model or train_models
Main Functions

- create_matrix
- create_corpus
- train_model or train_models
- classify_model or classify_models

Today and tomorrow we will walk through several examples using these and other functions and bits of code.
Main Functions

- create_matrix
- create_corpus
- train_model or train_models
- classify_model or classify_models
- create_analytics
Main Functions

- create_matrix
- create_corpus
- train_model or train_models
- classify_model or classify_models
- create_analytics

Today and tomorrow we will walk through several examples using these and other functions and bits of code
Main Functions

- create_matrix
- create_corpus
- train_model or train_models
- classify_model or classify_models
- create_analytics

Today and tomorrow we will walk through several examples using these and other functions and bits of code
Thank You

- Any questions contact Loren Collingwood
 lorenc2@uw.edu